Ship Systems Automation

American Society of Naval Engineers Intelligent Ship Symposium

June 1-2, 1994 Philadelphia

Joseph B. Famme tel: 703-528-3711 fax: 703-243-0173

Note: This is a re-print of the original slide presentation given by the author, Joseph Famme, at the ASNE Intelligent Ship Symposium, Philadelphia, 1994. Mr. Famme is now president of ITE Inc., www.ITEinc.US, jfamme@ITEinc.US.

Automation

Percent Remote Control & Automation

Technology Leverage

- Improve performance and survivability,
- Reduce costs: acquisition, training and maintenance

Components by Ship Class

Operating Environment

- **■** External operating environment:
 - weather
 - sea state
 - ocean acoustics
 - water depth and bottom type
 - navigation hazards
 - shipping
 - enemy threats
- Internal operating environment:
 - readiness of vital & non-vital systems
 - readiness and alertness of the crew
 - automation doctrine in force
 - logistics readiness

Warfighting Requirements

- Ship Operational Characteristics Study 1988
- Twelve Imperative Characteristics. Five Apply to HME & DC:
 - Integrated machinery systems
 - Survivability & the ability to fight hurt
 - Embedded readiness assessment, mission planning & training
 - Condition-based maintenance
 - Collocation of ship control and CIC

Incremental Approach

Manpower Reduction

Manpower Reduction

Conventional Low - Mix?

- Most merchant ships operate with a crew of less than twenty
- Can a commercial hull be modified to meet the SOCS requirements and reduce manpower as part of a high low mix?
- High mix provides sensors & C3I
- Low mix, linked to a high mix, provides firepower

Low - mix Stealth?

CREW 40 - MISSILES 1080

Tactical Application Lo **Gulf of Uno**

Navigation

- Current bridge designs are inefficient and expose dozens of watchstanders to hazardous conditions
- Automation to meet SOCS requirements could use:
 - Navigation with autopilot, ECPINS, GPS, Radar Overlay, IR, ESM, threat warning, C3I about external environment
- USN SES-200 has ECPINS, GPS & radar overlay

Collocation of Ship / Machinery Control and CIC into Primary and Secondary Command Centers

Mission Planning

- Current systems do not provide embedded readiness, mission planning and training
- This SOCS requirement requires the most effort to achieve due to the requirements to use 'ARTIFICIAL INTELLIGENCE" in the decision aiding process. Applications include:
 - Route selection considering the ship mission requirements, external environment and the ship's internal readiness
 - What if analysis of options

Threat Decision Aids

- Current ship HME & DC platform internal systems do not adapt automatically to the external environment (threat, sea state ...)
- The HME & DC systems should adapt automatically to improve:
 - operating efficiency
 - increase ship survivability
- Example: Pop up threat, cruise missile, 75 seconds time on top:
 - starting from Condition III
 - auto-start all vital systems and split for survivability
 - auto-full power to maneuver to pre-selected attack angle
 - turn ship for max-firepower, minimum damage / loss of life

Machinery Control

- SOCS requirements are being addressed in SMCS
- Will Navy ships apply these technologies?
 - full integration of ship control, HME & DC, and combat systems in dual command centers
 - full function consoles located in all vital decision stations
 - adaptive HME & DC reconfiguration
 - built-in training and mission planning
 - built-in test to the single LRU & built-in spares
 - low LRU count / maintenance requirements
 - reduced manning
 - increased combat volume: 23 % to more than 50%

Damage Control

- The number one public concern today is loss of life in combat operations. Did Desert Storm set an non-repeatable precedent?
- The key to minimum loss of life in combat is sending the fewest possible people into harm's way
- New designs support aggressive damage control
 - automation to reduce personnel requirements
 - adaptive HME & DC systems
 - inert gasses and non-explosive space fillers

NO PERSONNEL IN THESE SPACES ALL SPACES IN THIS AREA FILLED WITH NON-COMBUSTIBLE GAS OR MATERIAL, INSTANT REACTION FLOODING / HALON RELEASE

Condition Based Maintenance

- Maintenance is the highest driver for crew size in addition to damage control. Methods to reduce maintenance manning are:
 - change the design of systems and components. (SMCS reduces the component type count for machinery control systems by 84%)
 - Affordability Through Commonality
 - provide built-in test (BIT) and maintain systems based on condition rather than time
 - use BIT to automatically update ship readiness assessment and to support intelligent adaptive reaction to threats
 - convert watchstanders to non-watchstanders

Enabling Technologies

- Computer power exists to support enabling technologies
- Application technologies in artificial intelligence and sensors requires significant work
- Simulation can be used to validate design and test warfighting assumptions
- Reengineering techniques are available to audit design rationale

Confidence Building

- Crew "trained" in the employment of automated systems and "new warfare doctrine".
- A "new culture" developed, as in the space program.
- Maximum firepower, mission accomplished, minimum human risk.

Change the Paradigm

- Manpower Reduction to
- Human Risk Mitigation

Change the Design Process!!

Don't Tinker with the Design Reengineer!!

Cultural Change

ROLES AND MISSIONS

PRESENCE, SHOW THE FLAG

INTERNATIONAL AGREEMENTS

PRIDE

Conclusions

- Automation is here to stay
- Computer power exists to support the enabling technologies
- Application technologies in artificial intelligence and sensors requires significant work
- Conventional designs are prohibitively expensive
- Simulation can be used to validate design, test warfighting assumptions, and support cultural change
- Don't tinker with design, reengineer
- The paradigm has changed to human risk mitigation
- Cultural barriers will remain a challenge

It is an exciting time to be in the marine engineering profession!!